V = 1504.0 (5) Å³

Mo $K\alpha$ radiation $\mu = 1.25 \text{ mm}^{-1}$

 $0.5 \times 0.4 \times 0.4$ mm

12550 measured reflections

1401 independent reflections 1288 reflections with $I > 2\sigma(I)$

T = 293 (2) K

 $R_{\rm int}=0.045$

Z = 4

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[bis(µ₂-pyridine-2,6-dicarboxylato)cobalt(II)disodium(I)]

Fu-Chen Liu* and Jie Ouyang

School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China Correspondence e-mail: fencer@mail.nankai.edu.cn

Received 6 September 2007; accepted 10 September 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.069; data-to-parameter ratio = 11.3.

The title compound, $[Na_2Co(C_7H_3NO_4)_2]_n$, is isostructural with the nickel(II) analog. In the crystal structure, the Co cation is coordinated by two N atoms and four O atoms of two pyridine-2,6-dicarboxylate groups with a strongly distorted octahedral geometry. The Na cations are coordinated by six O atoms of pyridine-2,6-dicarboxylate anions in an irregular geometry. The bis(pyridine-2,6-dicarboxylato)cobalt complexes are connected by the sodium cations into a threedimensional coordination network.

Related literature

For the nickel(II) analog, see: Xiang et al. (2006).

Experimental

Crystal data

$[Na_2Co(C_7H_3NO_4)_2]$	
$M_r = 435.12$	
Orthorhombic, Pnna	
a = 14.476 (3) Å	
b = 12.643 (3) Å	
c = 8.2179 (16) Å	

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\min} = 0.560, T_{\max} = 0.611$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ 124 parameters $wR(F^2) = 0.069$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^-$ S = 1.16 $\Delta \rho_{\rm min} = -0.28 \text{ e} \text{ Å}^{-3}$ 1401 reflections

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT and SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledges the financial support from Tianjin Municipal Education Commission (No. 20060503).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2057).

References

Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Xiang, J., Yin, Y.-G. & Huang, X.-C. (2006). Acta Cryst. E62, m213-m215.

supplementary materials

Acta Cryst. (2007). E63, m2557 [doi:10.1107/S1600536807044121]

Poly[bis(#2-pyridine-2,6-dicarboxylato)cobalt(II)disodium(I)]

F.-C. Liu and J. Ouyang

Comment

Poly[bis(pyridine-2,6-dicarboxylato) cobalt(II)disodium(I)] (I)is isostructural with the nickel(II) analogs, whose structures has been reported recently (Xiang *et al.*, 2006). In the crystal structure the Co cation is coordinated by two nitrogen atoms and four oxygen atoms of two pyridine-2,6-dicarboxylato groups within an strongly distorted octahedra (Fig. 1). The Na cations are coordinated by six oxygen atoms of the pyridine-2,6-dicarboxylato anions in irregula geometry. The bis(pyridine-2,6-dicarboxylato cobalt complexes are connected by the sodium cations into a three-dimensional coordination network.

Experimental

A mixture of $Co(NO_3)_2.6 H_2O(0.145 \text{ g}, 0.5 \text{ mmol})$, $NaN_3(0.038 \text{ g}, 0.5 \text{ mmol})$, pyridyl-2,6-dicarboxylic acid(0.085 g, 0.5 mmol) and $H_2O(18 \text{ g}, 1 \text{ mol})$ in a ratio of 1:1:1:2000 was sealed in a Teflon-lined autoclave and heated at 413k for 72 h. On cooling to room temperature purple coloured crystals have grown. Yield, 30%, based on cobalt.

Refinement

The H atoms were positioned with idealized geometry and were refined isotropic with $U_{iso}(H) = 1.2 U_{eq}(C)$ using a riding model with C—H = 0.93 Å.

Figures

Fig. 1. Crystal structure of compound (I) with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: A = x, -y + 3/2, -z - 3/2.

Poly[bis(µ2-pyridine-2,6-dicarboxylato)cobalt(II)disodium(I)]

Crysiai aaia
$[Na_2Co(C_7H_3NO_4)_2]$
$M_r = 435.12$
Orthorhombic, Pnna
a = 14.476 (3) Å
<i>b</i> = 12.643 (3) Å
<i>c</i> = 8.2179 (16) Å

Curvetal data

 $D_x = 1.922 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 12804 reflections $\theta = 3.2-27.6^{\circ}$ $\mu = 1.25 \text{ mm}^{-1}$ T = 293 (2) K $V = 1504.0 (5) \text{ Å}^3$ Z = 4 $F_{000} = 868$

Data collection

Bruker SMART CCD area-detector diffractometer	1401 independent reflections
Radiation source: fine-focus sealed tube	1288 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
T = 293(2) K	$\theta_{\text{max}} = 25.5^{\circ}$
φ and ω scan	$\theta_{\min} = 3.2^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -17 \rightarrow 17$
$T_{\min} = 0.560, \ T_{\max} = 0.611$	$k = -15 \rightarrow 15$
12550 measured reflections	$l = -9 \rightarrow 9$

Prism, purple

 $0.5\times0.4\times0.4~mm$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.029$	$w = 1/[\sigma^2(F_o^2) + (0.0255P)^2 + 1.1266P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.069$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.16	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
1401 reflections	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
124 parameters	Extinction correction: SHELXL97, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Drimory store gits losstions structure inversiont direct	

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0131 (9)

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x y z $U_{\rm iso}^{*}/U_{\rm eq}$

Co1	0.48472 (3)	0.7500	-0.7500	0.02158 (17)
Na1	0.26971 (6)	0.64416 (7)	-0.10636 (11)	0.0271 (2)
N1	0.46109 (12)	0.59694 (13)	-0.6959 (2)	0.0184 (4)
O3	0.38369 (11)	0.75524 (11)	-0.5514 (2)	0.0323 (4)
C5	0.39461 (13)	0.57119 (16)	-0.5917 (2)	0.0187 (4)
C2	0.48779 (15)	0.41704 (17)	-0.7593 (3)	0.0229 (5)
H2A	0.5199	0.3657	-0.8174	0.027*
C1	0.50857 (14)	0.52354 (17)	-0.7765 (2)	0.0186 (5)
C4	0.37083 (15)	0.46689 (17)	-0.5658 (3)	0.0242 (5)
H4A	0.3247	0.4489	-0.4920	0.029*
C3	0.41763 (16)	0.38953 (17)	-0.6527 (3)	0.0271 (5)
H3A	0.4018	0.3188	-0.6394	0.033*
O4	0.29805 (11)	0.65269 (13)	-0.39208 (19)	0.0290 (4)
C7	0.35443 (14)	0.66626 (16)	-0.5038 (3)	0.0219 (5)
01	0.59125 (11)	0.66942 (12)	-0.87976 (19)	0.0272 (4)
C6	0.58828 (14)	0.56926 (16)	-0.8724 (3)	0.0204 (5)
O2	0.64704 (10)	0.50923 (12)	-0.9290 (2)	0.0307 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0246 (3)	0.0128 (2)	0.0274 (3)	0.000	0.000	-0.00046 (17)
Na1	0.0257 (5)	0.0220 (4)	0.0336 (5)	-0.0015 (4)	0.0005 (4)	-0.0036 (4)
N1	0.0182 (9)	0.0156 (9)	0.0215 (9)	0.0007 (7)	-0.0011 (7)	-0.0013 (7)
O3	0.0372 (9)	0.0189 (8)	0.0408 (10)	-0.0002 (7)	0.0139 (8)	-0.0046 (7)
C5	0.0165 (10)	0.0207 (11)	0.0190 (10)	-0.0004 (8)	-0.0016 (8)	-0.0009 (9)
C2	0.0242 (11)	0.0176 (11)	0.0269 (12)	0.0026 (9)	-0.0038 (9)	-0.0047 (9)
C1	0.0186 (10)	0.0172 (11)	0.0200 (11)	0.0021 (8)	-0.0041 (8)	-0.0013 (8)
C4	0.0225 (11)	0.0221 (11)	0.0280 (12)	-0.0035 (9)	0.0009 (9)	0.0028 (9)
C3	0.0306 (12)	0.0150 (10)	0.0357 (13)	-0.0049 (9)	-0.0031 (10)	0.0010 (9)
O4	0.0253 (8)	0.0332 (9)	0.0284 (9)	-0.0032 (7)	0.0080 (7)	-0.0075 (7)
C7	0.0172 (10)	0.0234 (11)	0.0250 (11)	0.0003 (9)	-0.0015 (9)	-0.0046 (10)
01	0.0262 (8)	0.0189 (8)	0.0365 (9)	-0.0022 (6)	0.0074 (7)	-0.0010 (7)
C6	0.0194 (10)	0.0218 (11)	0.0201 (11)	0.0018 (9)	-0.0031 (9)	-0.0012 (9)
O2	0.0245 (8)	0.0277 (8)	0.0398 (10)	0.0075 (7)	0.0074 (7)	-0.0022 (7)

Geometric parameters (Å, °)

Co1—N1 ⁱ	2.0149 (17)	O3—Na1 ⁱⁱⁱ	2.4538 (17)
Co1—N1	2.0149 (17)	C5—C4	1.379 (3)
Co1—O1 ⁱ	2.1338 (16)	C5—C7	1.518 (3)
Co1—O1	2.1338 (16)	C2—C3	1.386 (3)
Co1—O3 ⁱ	2.1923 (16)	C2—C1	1.387 (3)
Co1—O3	2.1923 (16)	C2—H2A	0.9300
Na1—O2 ⁱⁱ	2.3017 (18)	C1—C6	1.512 (3)
Na1—O4	2.3860 (19)	C4—C3	1.388 (3)
Na1—O3 ⁱⁱⁱ	2.4538 (17)	C4—H4A	0.9300

Na1—O2 ^{iv}	2.4795 (18)	С3—НЗА	0.9300
Na1—O4 ⁱⁱⁱ	2.6009 (19)	O4—C7	1.240 (3)
Na1—O1 ^{iv}	2.6056 (18)	O4—Na1 ⁱⁱⁱ	2.6009 (19)
Na1—C6 ^{iv}	2.797 (2)	C7—Na1 ⁱⁱⁱ	2.840 (2)
Na1—C7 ⁱⁱⁱ	2.840 (2)	O1—C6	1.268 (3)
Na1—Na1 ⁱⁱⁱ	3.5686 (18)	O1—Na1 ^{vi}	2.6056 (18)
Na1—Na1 ^v	3.6896 (18)	C6—O2	1.231 (3)
N1—C5	1.329 (3)	C6—Na1 ^{vi}	2.797 (2)
N1—C1	1.331 (3)	O2—Na1 ⁱⁱ	2.3017 (18)
O3—C7	1.264 (3)	O2—Na1 ^{vi}	2.4795 (18)
N1 ⁱ —Co1—N1	160.46 (10)	O2 ⁱⁱ —Na1—Na1 ^v	41.28 (4)
N1 ⁱ —Co1—O1 ⁱ	76.97 (6)	O4—Na1—Na1 ^v	94.08 (4)
N1—Co1—O1 ⁱ	118.09 (6)	O3 ⁱⁱⁱ —Na1—Na1 ^v	128.03 (5)
N1 ⁱ —Co1—O1	118.09 (6)	O2 ^{iv} —Na1—Na1 ^v	37.77 (4)
N1—Co1—O1	76.97 (6)	O4 ⁱⁱⁱ —Na1—Na1 ^v	179.67 (5)
Ol ⁱ —Col—Ol	87.44 (9)	O1 ^{iv} —Na1—Na1 ^v	88.15 (5)
N1 ⁱ —Co1—O3 ⁱ	75.60 (6)	C6 ^{iv} —Na1—Na1 ^v	61.34 (5)
N1—Co1—O3 ⁱ	91.27 (6)	C7 ⁱⁱⁱ —Na1—Na1 ^v	154.22 (5)
O1 ⁱ —Co1—O3 ⁱ	150.29 (6)	Na1 ⁱⁱⁱ —Na1—Na1 ^v	137.81 (3)
O1—Co1—O3 ⁱ	95.49 (6)	C5—N1—C1	121.60 (18)
N1 ⁱ —Co1—O3	91.27 (6)	C5—N1—Co1	120.04 (14)
N1—Co1—O3	75.60 (6)	C1—N1—Co1	118.15 (14)
O1 ⁱ —Co1—O3	95.49 (6)	C7—O3—Co1	115.29 (13)
O1—Co1—O3	150.29 (6)	C7—O3—Na1 ⁱⁱⁱ	94.14 (13)
O3 ⁱ —Co1—O3	96.31 (10)	Co1—O3—Na1 ⁱⁱⁱ	149.04 (8)
O2 ⁱⁱ —Na1—O4	94.15 (6)	N1—C5—C4	120.97 (19)
O2 ⁱⁱ —Na1—O3 ⁱⁱⁱ	91.02 (6)	N1—C5—C7	112.96 (18)
O4—Na1—O3 ⁱⁱⁱ	112.39 (7)	C4—C5—C7	126.00 (19)
O2 ⁱⁱ —Na1—O2 ^{iv}	77.32 (6)	C3—C2—C1	117.9 (2)
O4—Na1—O2 ^{iv}	105.64 (6)	C3—C2—H2A	121.1
O3 ⁱⁱⁱ —Na1—O2 ^{iv}	140.91 (7)	C1—C2—H2A	121.1
O2 ⁱⁱ —Na1—O4 ⁱⁱⁱ	138.59 (6)	N1—C1—C2	120.92 (19)
O4—Na1—O4 ⁱⁱⁱ	85.61 (6)	N1—C1—C6	112.77 (18)
O3 ⁱⁱⁱ —Na1—O4 ⁱⁱⁱ	52.03 (5)	C2—C1—C6	126.14 (19)
O2 ^{iv} —Na1—O4 ⁱⁱⁱ	142.46 (6)	C5—C4—C3	118.2 (2)
O2 ⁱⁱ —Na1—O1 ^{iv}	128.90 (6)	C5—C4—H4A	120.9
O4—Na1—O1 ^{iv}	97.00 (6)	C3—C4—H4A	120.9
O3 ⁱⁱⁱ —Na1—O1 ^{iv}	128.78 (6)	C2—C3—C4	120.4 (2)
O2 ^{iv} —Na1—O1 ^{iv}	51.64 (5)	С2—С3—НЗА	119.8
O4 ⁱⁱⁱ —Na1—O1 ^{iv}	92.02 (5)	С4—С3—НЗА	119.8
O2 ⁱⁱ —Na1—C6 ^{iv}	102.37 (7)	C7—O4—Na1	147.97 (14)

O4—Na1—C6 ^{iv}	96.62 (6)	C7—O4—Na1 ⁱⁱⁱ	87.91 (13)
O3 ⁱⁱⁱ —Na1—C6 ^{iv}	147.12 (7)	Na1—O4—Na1 ⁱⁱⁱ	91.28 (6)
O2 ^{iv} —Na1—C6 ^{iv}	26.11 (6)	O4—C7—O3	125.0 (2)
O4 ⁱⁱⁱ —Na1—C6 ^{iv}	118.82 (6)	O4—C7—C5	119.65 (19)
O1 ^{iv} —Na1—C6 ^{iv}	26.86 (5)	O3—C7—C5	115.38 (18)
O2 ⁱⁱ —Na1—C7 ⁱⁱⁱ	116.40 (7)	O4—C7—Na1 ⁱⁱⁱ	66.22 (12)
O4—Na1—C7 ⁱⁱⁱ	101.61 (7)	O3—C7—Na1 ⁱⁱⁱ	59.51 (11)
O3 ⁱⁱⁱ —Na1—C7 ⁱⁱⁱ	26.35 (6)	C5—C7—Na1 ⁱⁱⁱ	170.10 (15)
O2 ^{iv} —Na1—C7 ⁱⁱⁱ	148.47 (7)	C6—O1—Co1	115.36 (14)
O4 ⁱⁱⁱ —Na1—C7 ⁱⁱⁱ	25.87 (5)	C6—O1—Na1 ^{vi}	85.03 (12)
O1 ^{iv} —Na1—C7 ⁱⁱⁱ	109.79 (6)	Co1—O1—Na1 ^{vi}	142.84 (8)
C6 ^{iv} —Na1—C7 ⁱⁱⁱ	135.31 (7)	O2—C6—O1	125.0 (2)
O2 ⁱⁱ —Na1—Na1 ⁱⁱⁱ	135.68 (5)	O2—C6—C1	119.25 (19)
O4—Na1—Na1 ⁱⁱⁱ	46.77 (4)	O1—C6—C1	115.61 (18)
O3 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	87.76 (5)	O2—C6—Na1 ^{vi}	62.38 (12)
O2 ^{iv} —Na1—Na1 ⁱⁱⁱ	126.41 (5)	O1—C6—Na1 ^{vi}	68.12 (12)
O4 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	41.95 (4)	C1—C6—Na1 ^{vi}	151.45 (14)
O1 ^{iv} —Na1—Na1 ⁱⁱⁱ	83.06 (4)	C6—O2—Na1 ⁱⁱ	146.43 (15)
C6 ^{iv} —Na1—Na1 ⁱⁱⁱ	102.27 (5)	C6—O2—Na1 ^{vi}	91.51 (13)
C7 ⁱⁱⁱ —Na1—Na1 ⁱⁱⁱ	65.04 (5)	Na1 ⁱⁱ —O2—Na1 ^{vi}	100.95 (6)
N1 ⁱ —Co1—N1—C5	-41.45 (15)	O1 ^{iv} —Na1—O4—Na1 ⁱⁱⁱ	73.59 (6)
O1 ⁱ —Co1—N1—C5	96.22 (16)	C6 ^{iv} —Na1—O4—Na1 ⁱⁱⁱ	100.64 (6)
O1—Co1—N1—C5	176.12 (16)	C7 ⁱⁱⁱ —Na1—O4—Na1 ⁱⁱⁱ	-38.34 (7)
O3 ⁱ —Co1—N1—C5	-88.54 (16)	Na1 ^v —Na1—O4—Na1 ⁱⁱⁱ	162.22 (3)
O3—Co1—N1—C5	7.66 (15)	Na1—O4—C7—O3	-79.0 (4)
N1 ⁱ —Co1—N1—C1	133.33 (15)	Na1 ⁱⁱⁱ —O4—C7—O3	10.1 (2)
O1 ⁱ —Co1—N1—C1	-88.99 (16)	Na1—O4—C7—C5	99.9 (3)
O1—Co1—N1—C1	-9.10 (15)	Na1 ⁱⁱⁱ —O4—C7—C5	-171.07 (17)
O3 ⁱ —Co1—N1—C1	86.25 (16)	Na1—O4—C7—Na1 ⁱⁱⁱ	-89.1 (2)
O3—Co1—N1—C1	-177.56 (16)	Co1—O3—C7—O4	179.17 (17)
N1 ⁱ —Co1—O3—C7	161.39 (16)	Na1 ⁱⁱⁱ —O3—C7—O4	-10.7 (2)
N1—Co1—O3—C7	-3.95 (16)	Co1—O3—C7—C5	0.3 (2)
O1 ⁱ —Co1—O3—C7	-121.58 (16)	Na1 ⁱⁱⁱ —O3—C7—C5	170.39 (15)
O1—Co1—O3—C7	-27.1 (2)	Co1—O3—C7—Na1 ⁱⁱⁱ	-170.12 (15)
O3 ⁱ —Co1—O3—C7	85.74 (16)	N1—C5—C7—O4	-173.18 (18)
N1 ⁱ —Co1—O3—Na1 ⁱⁱⁱ	0.83 (17)	C4—C5—C7—O4	3.7 (3)
N1—Co1—O3—Na1 ⁱⁱⁱ	-164.51 (18)	N1—C5—C7—O3	5.8 (3)
O1 ⁱ —Co1—O3—Na1 ⁱⁱⁱ	77.86 (17)	C4—C5—C7—O3	-177.3 (2)
O1—Co1—O3—Na1 ⁱⁱⁱ	172.34 (12)	N1—C5—C7—Na1 ⁱⁱⁱ	62.5 (9)
O3 ⁱ —Co1—O3—Na1 ⁱⁱⁱ	-74.82 (16)	C4—C5—C7—Na1 ⁱⁱⁱ	-120.5 (8)
C1—N1—C5—C4	-1.4 (3)	N1 ⁱ —Co1—O1—C6	-162.89 (14)

supplementary materials

Co1—N1—C5—C4	173.17 (16)	N1—Co1—O1—C6	3.74 (15)
C1—N1—C5—C7	175.65 (18)	O1 ⁱ —Co1—O1—C6	123.35 (17)
Co1—N1—C5—C7	-9.7 (2)	O3 ⁱ —Co1—O1—C6	-86.29 (15)
C5—N1—C1—C2	2.5 (3)	O3—Co1—O1—C6	26.7 (2)
Co1—N1—C1—C2	-172.17 (16)	N1 ⁱ —Co1—O1—Na1 ^{vi}	79.30 (13)
C5—N1—C1—C6	-172.97 (17)	N1—Co1—O1—Na1 ^{vi}	-114.07 (13)
Co1—N1—C1—C6	12.3 (2)	O1 ⁱ —Co1—O1—Na1 ^{vi}	5.54 (7)
C3—C2—C1—N1	-1.5 (3)	O3 ⁱ —Co1—O1—Na1 ^{vi}	155.90 (12)
C3—C2—C1—C6	173.37 (19)	O3—Co1—O1—Na1 ^{vi}	-91.06 (16)
N1—C5—C4—C3	-0.6 (3)	Co1—O1—C6—O2	-174.52 (17)
C7—C5—C4—C3	-177.3 (2)	Na1 ^{vi} —O1—C6—O2	-27.0 (2)
C1—C2—C3—C4	-0.6 (3)	Co1-O1-C6-C1	1.4 (2)
C5—C4—C3—C2	1.6 (3)	Na1 ^{vi} —O1—C6—C1	149.01 (16)
O2 ⁱⁱ —Na1—O4—C7	-68.3 (3)	Co1—O1—C6—Na1 ^{vi}	-147.57 (12)
O3 ⁱⁱⁱ —Na1—O4—C7	24.6 (3)	N1—C1—C6—O2	167.43 (19)
O2 ^{iv} —Na1—O4—C7	-146.3 (3)	C2—C1—C6—O2	-7.8 (3)
O4 ⁱⁱⁱ —Na1—O4—C7	70.2 (3)	N1—C1—C6—O1	-8.8 (3)
01 ^{iv} —Na1—O4—C7	161.7 (3)	C2—C1—C6—O1	176.0 (2)
C6 ^{iv} —Na1—O4—C7	-171.3 (3)	N1-C1-C6-Na1 ^{vi}	82.2 (3)
C7 ⁱⁱⁱ —Na1—O4—C7	49.8 (3)	C2—C1—C6—Na1 ^{vi}	-93.1 (3)
Na1 ⁱⁱⁱ —Na1—O4—C7	88.1 (3)	O1—C6—O2—Na1 ⁱⁱ	140.9 (2)
Na1 ^v —Na1—O4—C7	-109.7 (3)	C1—C6—O2—Na1 ⁱⁱ	-35.0 (4)
O2 ⁱⁱ —Na1—O4—Na1 ⁱⁱⁱ	-156.38 (5)	Na1 ^{vi} —C6—O2—Na1 ⁱⁱ	112.5 (3)
O3 ⁱⁱⁱ —Na1—O4—Na1 ⁱⁱⁱ	-63.55 (7)	O1—C6—O2—Na1 ^{vi}	28.3 (2)
O2 ^{iv} —Na1—O4—Na1 ⁱⁱⁱ	125.64 (5)	C1-C6-O2-Na1 ^{vi}	-147.49 (16)
O4 ⁱⁱⁱ —Na1—O4—Na1 ⁱⁱⁱ	-17.91 (7)		

Symmetry codes: (i) x, -y+3/2, -z-3/2; (ii) -x+1, -y+1, -z-1; (iii) x, -y+3/2, -z-1/2; (iv) x-1/2, y, -z-1; (v) -x+1/2, -y+1, z; (vi) x+1/2, y, -z-1.

